Quechan Utility Annual Water Quality Report

Public Water System #090400089

2023

This report is a snapshot of your water quality. Included are details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. We are committed to providing you with information because informed customers are our best allies.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The Environmental Protection Agency (EPA) and Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Where does my water come from?

Your water comes from 2 ground water sources.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline (800–426–4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity including:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

WATER QUALITY TABLE

The table below lists all of the drinking water contaminants detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires monitoring for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Contaminants	MCLG	MCL	Your Water	Ra Low	nge High	Sample Date	Violation	Typical Source	
Inorganic Contaminants									
Arsenic Units: ppb	0	10	7.8	N/A	N/A	2023	No	Erosion of natural deposits; runoff from orchards; glass an electronics production wastes	
Barium Units: ppm	2	2	0.032	N/A	N/A	2023	No	Discharge of oil drilling waster and from metal refineries; erosion of natural deposits	
Nitrate [reported as Nitrogen] Units: ppm	10	10	1.4	ND	1.4	2023	No	Runoff and leaching from fertilizer use; leaching from septic tanks, sewage; erosion o natural deposits	
Sodium Units: ppm	N/A	N/A	110	N/A	N/A	2023	No	Erosion of natural deposits; sal water intrusion	
Contaminants	MCLG	Action Level	Your Water	Range		Sample Date	A.L. Exceeded	Typical Source	
Lead and Copper Rule									
Copper Units: ppm - 90th Percentile	1.3	1.3	0.1	0 sites over Action Level		2023	No	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
Lead Units: ppb - 90th Percentile	0	15	6.1	6.1 2 sites over Action Level		2023	No	Corrosion of household water plumbing systems; discharges from industrial manufacturers erosion of natural deposits	

Contaminants	MCLG	MCL	Your Water		High	Sample Date	Violation	Typical Source	
Radiological Contaminants									
Adjusted Alpha (Excl. Radon & U) Units: pCi/L	0	15	2	N/A	N/A	2020	No	Erosion of natural deposits	
Uranium (combined) Units: ppb	0	30	2.4	1.9	2.4	2020	No	Erosion of natural deposits	
Contaminants	MCLG	MCL	Your Water		nge High	Sample Date	Violation	Typical Source	
Unregulated Contaminant Mo	nitoring Rule	,							
HAA5 Units: ppb	N/A	N/A	0		0	2020	No		
HAA6Br	N/A	N/A	0		0	2020	No		
Units: ppb									

Special Education Statements

Additional Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. PWS system is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or at http://www.epa.gov/your-drinking-water/basic-information-about-lead-drinking-water.

Additional Information for Arsenic

While your drinking water meets the EPA standard for arsenic, it does contain low levels of arsenic. The EPA standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. The EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems.

Per- and Polyfluoroalkyl Substances (PFAS) Monitoring

Last year, your water system participated in a voluntary sampling project that evaluated for the presence of twenty-five PFAS compounds. No PFAS constituents were detected in your drinking water.

PFAS are a group of thousands of synthetic chemicals that have been in use since the 1940s. PFAS have been found in a wide array of consumer and industrial products and as an ingredient in firefighting foam. Current scientific research has shown links between exposure to some PFAS chemicals and adverse health outcomes. Drinking water may be impacted in communities where these chemicals have contaminated the water supply. EPA does not currently regulate any PFAS compounds, but has established health advisories for two PFAS compounds, and is currently working to develop a National Drinking Water Regulation for PFAS. EPA anticipates finalizing the rule in fall of 2023.

You can find more information about EPA's actions to address PFAS in drinking water and links to informational resources here: www.epa.gov/pfas

Microbiological Testing

We are required to test your water regularly for signs of microbial contamination. Positive test results could lead to follow-up investigations called assessments and potentially the issuance of public health advisories. Assessments could lead to required corrective actions. The information below summarizes the results of those tests.

Calendar Year	Sampling Requirements	Sampling Conducted (months)	Total E.coli Positive	Assessment Triggers	Assessments Conducted
2023	8 Samples due monthly	12 out of 12	0	1	1

During the year 2023, One Level 2 Assessment was required to be completed for our water system. One Level 2 Assessment completed. In addition, we were required to take 3 corrective actions and we completed 1 of these actions.

A Level 2 Assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and /or why total coliform bacteria have been found in our system on multiple occasions. E. coli are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Human pathogens in these wastes can cause short-term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a greater health risk for infants, young children, the elderly, and people with severely compromised immune systems. We found E. coli bacteria, indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Coliforms are bacteria that are naturally present in the environment and are used as an indicator that other, potentially harmful, waterborne pathogens may be present or that a potential pathway exists through which contamination may enter the drinking water distribution system. We found coliforms indicating the need to look for potential problems in water treatment or distribution. When this occurs, we are required to conduct assessment(s) to identify problems and to correct any problems that were found during these assessments.

Significant Deficiencies

Sanitary deficiencies are defects in a water system's infrastructure, design, operation, maintenance, or management that cause, or may cause interruptions to the "multiple barrier" protection system and adversely affect the system's ability to produce safe and reliable drinking water in adequate quantities.

The following is a listing of significant deficiencies that have yet to be corrected. Your public water system is still working to correct these deficiencies and interim milestones are shown, as applicable.

Deficiency Title: Cross-Connection Control Program

Date Identified: 3/21/2019 Overall Due Date: 12/31/2024

Deficiency Description: The PWS does not have a formal, written CCCP. It does have several high risk service connections with backflow prevention assemblies but there is no assurance the assemblies are tested and functional.

Corrective Action Plan: Cross-connections and backflow into the distribution system present a significant threat to the public's health. The PWS should "implement, administer, and maintain an on-going backflow and cross-connection control program to protect the public water system from the hazards originating on the premises of their customers and from temporary connections that may impair or alter the water in the public water system." The PWS should develop and implement a CCCP, including annual inspection and testing of all backflow prevention assemblies.

The CCCP should include periodic surveillance of the distribution system by an individual familiar with complex plumbing systems, high risk service connections and identification of cross-connection and backflow potential. All backflow prevention activities, including testing, should be documented. All hose bibs within the facilities should be equipped with vacuum breakers. EPA's guidance for developing a CCCP can be found at the following site:

https://nepis.epa.gov/Exe/ZyPDF.cgi/2000262T.PDF?Dockey=2000262T.PDF

Deficiency Title: Cross-Connection Control Program

Date Identified: 8/13/2021 Overall Due Date: 12/31/2024

Deficiency Description: There are several high-risk service connections, such as medical facilities, schools, RV park, commercial and industrial establishments, and the casino, that reportedly have backflow prevention assemblies, but there is no assurance the assemblies are tested and functional.

Corrective Action Plan: The PWS should get Tribal Council approval of the draft CCCP and then implement, administer, and maintain an on-going backflow and cross-connection control program. The CCCP needs to include annual inspection and testing of all backflow prevention assemblies.

The CCCP should include periodic surveillance of the distribution system by an individual familiar with complex plumbing systems, high risk service connections, and identification of cross-connection and backflow potential. All backflow prevention activities, including testing, should be documented. USEPA's guidance for developing a CCCP can be found at the following site:

https://nepis.epa.gov/Exe/ZyPDF.cgi/2000262T.PDF?Dockey=2000262T.PDF

Definitions

Term	Definition					
ppm	parts per million, or milligrams per liter (mg/L)					
ppb	parts per billion, or microgram per liter (ug/L)					
positive samples	the number of positive samples taken that year					
% positive samples/month	% of samples taken monthly that were positive					
pCi/L	picocuries per liter					
ND	Not detected					
N/A	Not applicable					
MCLG	Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.					
MCL	Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.					
TT	Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.					
AL Action Level: The concentration of a contaminant which, if exceeded, trig other requirements which a water system must follow.						
90th Percentile	Statistical value used to determine if Action Level is exceeded. Determined by calculating the value at which 90% of the samples tested were below that value.					

How can I get involved?

Please feel free to contact the number provided below for more information or for a translated copy of the report if you need it in another language.

Please share this information with all the other people who drink this water, especially those who may not have received this notice directly (for example, people in apartments, nursing homes, schools, and businesses). You can do this by posting this notice in a public place or distributing copies by hand or mail.

For more information please contact:

Yadira Swift Arrow, Interim Public Works Director, P.O. Box 1899 , Yuma, California 85366-1899

Phone: (960) 572-0667

Fax: